

INFRASTRUCTURE DESIGN FLOW

A fresh approach to drainage design.

Drainage design is complex. Drainage design software is expensive. It doesn't have to be.

What is Flow?

Flow is a hydraulic modelling package for the **design and analysis of storm water drainage networks** and the **design of foul water networks**. This solution is ideal for engineers and architects who are looking for an affordable and compelling drainage design package.

Key Benefits

COST SAVINGS

Delivered as a subscription model, therefore offering savings of 90% of upfront software investment

PRODUCTIVITY

Intuitive, friendly interface that typically **increases productivity by 25%**

EASY TO LEARN

Engineers can **start instantly** with no need for expensive training courses

PROFITABILITY

Increase your **billable hours** and consequently your revenue and profit

COMPLIANCE

Latest UK specific key legislations, regulations, standards, and guidance are **embedded within Flow**, streamlining the design approval process.

I really appreciated the quick turnaround on the additional elements and tools that you have introduced to Flow, particularly the half drain down times function, as they have enabled our Section 104 Agreement submissions to have been accepted with no queries or concerns with the approving authority.

JOHN CURTIS

POWERFUL TOOLS TO HANDLE ANY DRAINAGE DESIGN

Why Flow?

FLOW is a complete drainage design and modelling software **built on the Modified Rational Method** for sizing any conveyance system and the **state-of-the-art 1D SWMM engine** for hydraulically analysing storm drainage systems. Flow empowers engineers, consultants, developers, and approving authorities to deliver an optimal and compliant design.

DESIGN storm water networks with the Modified Rational Method, and design foul networks in accordance with the **requirements of BS EN 752:2008**. Flow enables designers to combine new design with existing networks seamlessly to conduct integrated hydraulic analysis, including negative falls or backdrops, throttle pipes and bifurcations.

DEFINE network as a set of **nodes and links** making designing multiple links possible. There is no need for a dendritic numbering system, allowing for greater flexibility.

	50		<u>¦</u> ≡ (=) 창	4		
Simulation Settings		Name	US Node	DS Node	Length (m)	Ks (mm)
Storm	• 1.000	1	1	5	50.000	0.600
Design Settings	• 2.000	2	2	3	27.939	0.600
P Nodes	• 2.001	5	3	4	40.000	0.600
1	• 2.002	4	1	5	5.869	0.600
O LINKS	• 1.001	5	5	18	50.000	0.600
Flow Controls	• 3.000	6	6	7	24.095	0.600
- Storage	• 3.001	7	7	8	29.075	0.600
Hinor Losses	• 3.002	8	3	15	25.901	0.600
Results	• 4.000	9	9	10	35.018	0.600
	• 4.001	1	10	14	29.411	0.600
	• 5.000	1	11	12	59.293	0.600
	• 5.001	1	12	13	22.091	0.600
	• 5.002	1	13	14	34.676	0.600
	• 4.002	1	14	15	40.358	0.600
	• 3.003	1	15	16	24.108	0.600
	• 3.004	1	16	17	28.852	0.600
	• 3.005	1	17	18	27.586	0.600
	• 1.002	1	18	22	50.000	0.600
	• 6.000	1	19	20	40.166	0.600
	6.001	2	20	21	42.730	0.600
	6.002	2	21	22	56.000	0.600
	• 1.003	2	22	32	50.000	0.600
	• 7.000	2	23	24	50.008	0.600

AUTOMATED calculation of falls to give minimum velocity. Pipe diameters are selected from a **predefined set of pipe sizes**. Manholes sizes are calculated in accordance with sewers for adoption or user definable conduits. Automated backdrop removal and design for capacity gives optimum cover depth or meet known outfall level.

Orifice ~	Diameter (m)	0.111
	Discharge Coefficient	0.600
Online Y		
✓		
1.400		
30.0		
Calc		
	Online Online Image: Calc	Online v Online v Image: Calc Discharge Coefficient

SUDS can be modelled to satisfy the **latest guidance (SuDS Manual C753) via templates**, then cascaded with flow-back to upstream structures in the event that downstream structures fail. SuDS can also be designed at the detailed design stage independently or combined with the traditional storm water drainage network.

CALCULATE PRE-DEVELOPMENT RUNOFF

RATES AND VOLUMES to show equity or betterment to post-development runoff rates and volume. For SuDS feasibility analysis, **quickly estimate storage sizes** to begin designing infiltrating structures in detail.

DEFINE OR IMPORT RAINFALL data by specifying FSR or FEH rainfall data or directly specify rainfall profiles and add a climate change factor. **Automatically generate time varying rainfall** using UK 50 percent summer profile from a 15-minute to 7-day duration. Analyse one or multiple storm durations in sine run with results collated and critical durations automatically identified at every node.

SIMULATE the design using **cutting-edge 1d**

dynamic wave routing over multiple storm durations for a range of return periods and profiles. Hydraulically analyse drainage systems to identify and solve issues with any design swiftly and effortlessly. Dynamic wave routing takes account of node and link storage, backwater effects, entrance and exit losses, flow reversal, and pressurised flow.

imulation Settings	Rainfall Methodology	FEH ~	Storm Durations (mins)
Storm Network	Return Period (years)	30	✓ 15
Design Settings	Climate Change (%)	30	✓ 30
Nodes	C (1km)	-0.029	Load 60
Links	D1 (1km)	0.336	120
Flow Controls	D2 (1km)	0.325	240
Storage	D3 (1km)	0.372	360
Minor Losses	E (1km)	0.304	480
Results	F (1km)	2.477	✓ 600
	CV	1.000	✓ 120 ✓ 960
	Analysis Speed	Detailed v	1440
	Drain Down Time (mins)	240	2160
			2880
			4320
			7200
			8640
			10080

MODEL open manhole, sealed manhole and junctions.

MODEL FLOW CONTROLS composite inline controls, overflow and multiple controls to set a range of discharge rates.

MODEL STORAGE AND INFILTRATION

STRUCTURES as online or offline arrangements, loops, and additional losses to **control flooding**. Drain down time can be adjusted to check the feasibility of each SuDS option.

EASY IMPORT/EXPORT functionality supports several formats including the capability to copy and paste from any Excel spreadsheet. Supports **industry file formats**: .SWS .EWS and .MDX.

GRAPHICALLY VISUALISE any drainage network in long section and plan forms, and detect crossings and clashes.

CONDUCT AUTOMATIC COMPLIANCE

AUDITS to check against **approval authorities'** requirements before submission for consent.

INTEGRATE with **PDS and / or Smart Drainage** (direct AutoCAD integration) for graphical setting out, scheduling, and the production of sections.

REPORT design output data to formats such as **Excel and PDF**.

A FRESH APPROACH TO DRAINAGE DESIGN